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We study the renormalization dynamics deriving from a hierarchical tight-binding 
Schr6dinger equation. In the Part I of this work we analyzed the topological 
structure of the recurrent set--a chaotic repeller--and its relation with the 
spectral problem. In this part we turn our attention to the metric properties of 
the repeller. We first study periodic orbits and their bifurcation unfolding, and 
we organize them on a binary tree. We then apply a thermodynamic formalism 
which provides a complete characterization of the scaling properties of the 
energy spectrum. The distribution f ( a )  of local dimensions is determined by 
computing both a generalized {-function through the periodic orbits and the 
bandwidths of periodic approximants of the Schr6dinger operator. When the 
growth rate R of the potential is smaller than 1, we find evidence of a phase 
transition, implying that two different classes of states coexist in the spectrum. 
The asymptotic behavior of the Lebesgue measure /2 of the spectrum is also 
studied. A linear scaling of # to 0 is observed for R ~ 1 , while for R > 1, the 
measure of the periodic approximants goes to 0 as R -h with the hierarchical 
order h. Finally, we show that the localized state, present for R <  1, is 
characterized by a superexponential scaling of the bandwidth. 

KEY WORDS: Hierarchical structures; multifractality; phase transitions; 
strange repellers; localization. 

1. I N T R O D U C T I O N  

E x a c t l y  r e n o r m a l i z a b l e  t i g h t - b i n d i n g  S c h r 6 d i n g e r  o p e r a t o r s  h a v e  b e e n  

i n t r o d u c e d  b y  v a r i o u s  a u t h o r s .  F i b o n a c c i  p o t e n t i a l s  (1'2) h a v e  b e e n  

r i g o r o u s l y  s h o w n  to  y ie ld  a C a n t o r - s e t  s p e c t r u m .  (3 5) A n  a n a l o g o u s  

s i t u a t i o n  is p r e s e n t  in  h i e r a r c h i c a l  m o d e l s  as  well. (~s)  A t . v a r i a n c e  w i t h  t he  
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Fibonacci case, the spectrum presents a transition from absolute to 
singular continuous at the value R = 1 of the growth rate of the potential. 
In Part I of this work (9) we were able to locate and characterize all the 
components of the spectrum for different values of the parameters. We also 
discussed the presence of a pure point component located at the upper 
bound of the spectrum and the associated wavefunctions. 

In this paper we turn our attention to the scaling properties of the 
invariant measure. These properties are related to the scaling indices of 
physical quantities like the density of states, which have been preliminarly 
studied also in refs. 6 and 7. 

The paper is organized as follows. In Section 2 we briefly recall the 
main features of the model. In Section 3 we study the bifurcations of 
periodic orbits of the renormalization transformation as a function of the 
parameter R. The introduction of a suitable symbolic dynamics allows to 
show that, for R > 1, the periodic orbits can be arranged on a complete 
binary tree. The ordering of trajectories in the symbol plane allows us to 
develop a simple numerical procedure to compute unstable periodic orbits. 
In Section 4 we present a detailed multifractal analysis of the repeller and 
of the energy spectrum, both for R > 1 and R < 1. In the latter case, the 
application of the ~-function formalism shows in an accurate way the 
existence of a phase transition in the sense of thermodynamic formalism 
applied to strange sets. Scaling properties of the asymptotic measure of the 
energy spectrum are also studied as a by-product of the multifractal 
analysis. Finally, an anomalous (superexponential) scaling is detected 
around the largest value of the energy spectrum. Section 5 is devoted to 
conclusions. 

2. T H E  M O D E L  

Let us introduce the following discrete one-dimensional Schr6dinger 
operator H(8): 

(H~)(i)  = -EO(i+l)-2~b(i)+~(i-1)]+V(i) tp(i)  (2.1) 

where 
V(i) = 2f(ord(i)) (2.2) 

Here i labels the lattice sites, ~ is a real parameter giving the strength of 
the potential, ord(i) is the largest nonnegative integer j such that 2 j is a 
divisor of i, and f is a real-valued function defined as follows: 

R J -  1 
f ( j )  = (2.3) 

R - - 1  
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where R is chosen to be a positive real parameter. The potential has a 
peculiar definition in i = 0: 

~,l/(1 -R) ,  R< 1 
V(0) = 2 jlimoo f ( j )  = ( o %  R >1 1 

deriving from the equivalence of the semi-infinite with the doubly infinite 
problem. The eigenvalue problem 

H O ( i ) =  Et) ( i )  

can be solved by renormalization group. (6 81 This procedure leads to the 
following recursion equations: 

{ X , + l = 2 - - X 2 + X n y , ,  

Yn + ~ - R x n  Yn 
(2.4) 

with initial conditions Xo = E -  2 and Y0 = 2, where xn + 1 and Yn + 1 represent 
the renormalized energy and potential strength, respectively. 

3.  P E R I O D I C  O R B I T S  

The fixed points of Eq. (2.4) in the (x, y) plane are 

F 1 = ( - 2 , 0 )  

F2 (1,0) 

F3 (-1/R,(2R2+R-1)/R) 

Stability analysis shows that F1 and F2 have an unstable manifold along 
the x axis and a stable (unstable) manifold transverse to the x axis for 
R < 1/2 (R > 1/2) and R < 1 (R > 1), respectively. The fixed point F3 is an 
unstable focus up to R = 1/2, where it coincides with the fixed point F1, 
then becoming a saddle for R > 1/2. 

Let us observe that the dynamics of map (2.4) along the x axis coincides 
with that of logistic map x ' =  2 - x  2 at the Ulam point. Accordingly, the 
interval [ - 2 ,  2] is mapped onto itself and the generating partition is made 
of the two subsegments [ - 2 ,  0) and (0, 2] which can be associated wih the 
symbols 0 and 1, respectively. As a result, each trajectory is converted into 
a sequence of symbols (ss) sn according to the sign of x~. It is well known 
that there is a one-to-one correspondence between infinite ss and initial 
conditions in the invariant interval. In other words, all sequences are 
allowed, and, in particular, all periodic sequences exist. 
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Besides the trajectories belonging to the interval [ -  2, 2] of the x axis, 
a fixed point F3 and a period-2 orbit have been identified in refs. 7 and 10 
which generically lie out of it. In the following we show that such two 
orbits are nothing but a particular case of an infinite family of trajectories 
lying out of the x axis, and representing the skeleton of a nontrivial strange 
repeller. They arise from the familiar periodic orbits of the logistic map 
through two kinds of bifurcation phenomena that can be investigated by 
means of a simple linear stability analysis. The linearization of map (2.4), 

6xn+ 1 = (Yn - 2x~) 8x,, + xn cSy n 
(3.1) 

6 y ,  + 1 = - R y ~  6x~ - Rx~  6y~ 

indicates that the tangent map for all orbits characterized by Yn = 0 is of 
the special type 

M ~ = x ,  0 R = x n A , ,  (3.2) 

so that x n plays the role of a multiplicative factor only. Since the elgen- 
values of the matrix An are equal to - 2  and - R ,  the eigenvalues of a 
periodic orbit are given by 

m 1 = ( - 2 )  n 12[ xi, m 2 = ( - R )  n 1s xi (3.3) 
i = l  i = 1  

The multiplier ml coincides with the eigenvalue of the logistic map at crisis, 
which is equal to ___2 n for all periodic orbits of period n, except for the 
fixed point F1, for which it is equal to 4. Accordingly, the second multiplier 
turns out to be equal to • R", indicating that all periodic orbits bifurcate 
at R = 1 (except, again, for the fixed point F1, which bifurcates at R = 1/2). 
The existence of an infinite family of bifurcations suggests that an infinity 
of periodic orbits is to be expected out of the x axis. By recalling that the 
nature of a bifurcation depends on the way the unit circle is crossed by the 
eigenvalue m2 of the periodic orbit, here we expect two kinds of bifurcations: 
(a) period doubling when the sign of the multiplier is negative, (b) double 
point, i.e., an exchange of stability with another solution, when the sign of 
the multiplier is positive. (11/From the previous analysis it follows that the 
information on the sign of the multiplier can be directly retrieved from the 
parity of the number of l's occurring in the ss associated with the orbit and 
restricted to one period. Accordingly, we have the following result. 

L e m m a .  All periodic orbits (with y = 0 )  characterized by an odd 
number of l's undergo a period-doubling bifurcation (m 2 = - 1 )  at R = 1. 
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All periodic orbits (with y =0 )  characterized by an even number of l's 
undergo a double-point bifurcation (m2 = 1) at R = 1. 

]En particular, the fixed point F1, characterized by a s s  of O's, 
exchanges its stability with the fixed point F3, while the fixed point F2, 
characterized by a s s  of l's, gives rise to a period-2 solution which exists 
for R > 1 only, as already discussed in refs. 7 and 10. 

]In order to disentangle the structure of the strange repeller, it is now 
necessary to follow the new branches arising from the above bifurcations. 
In particular, we perform a numerical analysis of orbits of short period to 
answer the following questions: (a) unfolding (direct/inverse) of the period- 
doubling bifurcations; (b) existence of further bifurcations. 

We begin with the orbits of period 3, to arrive at 9, with the hope of 
finding clear evidence of some general law. By scanning all sequences of 
three bits, it is well known that two independent orbits are found, namely 
(100) and (110), all the other ones being obtained by rotating the bits, or 
coinciding with an iterated period-1 trajectory. According to the lemma, 
the sequence (100) gives rise to a period-6 orbit. The dependence of one of 
its six values on R is reported in Fig. la, from which the direct nature of 
the period-doubling bifurcation emerges. Still from the lemma, it follows 
that the sequence (110) is associated with a double-point bifurcation. One 
of the values assumed by the period-3 solution is reported in Fig. lb, 
showing that a new tangent bifurcation occurs at R = R c = 0.939142 .... In 
other words, for any R larger than R c two period-3 solutions exist out of 
the x axis, emerging from a bifurcation with the trajectory characterized 
by the ss (110). The results of these first numerical simulations can be 
summarized by stating that: (a) the period-doubling bifurcation is a direct 
one (as for the fixed point F2); and (b) a tangent bifurcation is found at 
a critical value Rc < 1. 

These two results remain valid after the analysis of all periodic orbits 
up to period 9, the only difference being the value of Re. Therefore we 
propose the following: 

C o n j e c t u r e .  An orbit of period n, lying onto the x axis, and 
containing an odd number of l's gives rise to one orbit of period 2n out of 
the x axis for R >  1. An orbit of period n, lying onto the x axis and 
containing an even number of l's, gives rise to two orbits of period n out 
of the x axis for R > Rc (Re ~< 1). 

Under the hypothesis contained in this conjecture, we can prove a 
theorem concerning the number of periodic orbits lying out of the x axis 
for R > I .  

We denote by M(n) the number of primitive periodic orbits of length 
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Fig. 1. Bifurcation diagrams of the two period-3 orbits characterized by the symbol 
sequences (a) 100 and (b) 110. The two branches represent (a) two points of the same orbit 
of period 6 and ss UUUDDD, and (b) two orbits of period 3 and ss UUD, UDD. 

n of the logistic map, i.e., distinct under rotation of the symbols, and 
indecomposable in the sum of equal shorter blocks. M(n) can be formally 
split into two terms: orbits with an even and an odd number  of l's, Mo(n) 
and Me(n), respectively. 

T h e o r e m .  The number  of periodic orbits lying out of the x axis for 
R > 1 coincides with the number of orbits with the same period on the x 
axis, except for one orbit of period 1. 
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According to the lemma, and from the conjecture, it follows that the 
theorem can be expressed in terms of the following relations: 

Mo(n) = Me(n) odd n 

Mo(n) = Me(n) + Mo(n/2) even n 
(3.4) 

Before proceeding with the proof, let us also introduce the number M(n, j) 
of periodic sequences of length n, containing a number j of l's. 
Combinatorial analysis allows us to prove that (12) 

1 2 lt(m)(n/m~ 
M(n'J)=n i,~,j \j/mJ (3.5) 

where m In, j means that m divides both n and j, and #(m) is obtained by 
inverting the primary relation 

nM(n) = 2 n (3.6) 
rain 

representing the normalization condition (i.e., the total number of ss of 
length n is 2~). Given the decomposition of a generic m in terms of prime 
factors p(m) (1 included) 

p(m) 

m = ~I qi (3.7) 
i = 1  

one has (12} 

#(m)=(-1) p(m) if qir for { i r  

#(m) = 0 otherwise 
(3.8) 

Equation (3.5) allows us to determine Mo(n), 

Mo(n) =-1 2 I~(rn) •o (n/m'] (3.9) 
nml, mlS \ f i n ]  

where the "o" in the second sum means that it is restricted to odd j's. 
A similar expression can be obviously written for Me(n). We proceed now 
by considering separately the cases of odd and even n. 

(A) If n is odd, then 

1 
Mo(n)= Mfin)=~n ~ #(n)2 n/m 

mln 

(3.1o) 

822/65/1-2-6 
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This result follows immediately, by observing that j and n - j  have 
opposite parity, and by a standard relation between binomial coefficients. 

(B) If n is even, then 

1 
Mo(n)=~n ~~ (3.11) 

rnln  

and 

Me(n) = Mo(n) + 1_ ~ #(m)2n/m (3.12) 
FI rn[n 

where "o" and "e" above the sums indicate that they are restricted to odd 
and even m's. Indeed, at variance with (A), n/m can be either odd or even, 
depending on m. In the first case, we are in a condition perfectly equivalent 
to (A), whereas in the second one, all even submultiples of n contribute to 
Me(n) only. 

By substituting Eqs. (3.10)-(3.12) into Eq. (3.4), we find that the relation 
to be proved becomes 

_1_ ~ 12(2i)2,,/2i=1 y,o #(m)2n/2m (3.13) 
l'l i I n /2  2n m I n/2 

where we have introduced i=m/2, as the first sum was restricted to 

even m's. 
To prove Eq. (3.13), we consider separately the cases odd n/2 and even 

n/2, as follows: 

(B1) From Eqs. (3.7) and (3.8) it is immediately seen that 

~(n) = -# (n /2 )  (3.14) 

As a result, since n/2 odd implies m odd in Eq. (3.13), case B1 is proved. 

(B2) If n/2 is even, it is sufficient to prove that 

~e #(4m)Zn/m = 0 (3.15) 
rain 

being even has been redefined as half of its actual value in 

#(4m) = 0 (3.16) 

Accordingly, the theorem is proved. QED 

where m 
Eq. (3.13). Again from Eqs. (3.7) and (3.8), we have that 
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As the number of periodic orbits out of the x axis is equal to the 
number of orbits of the logistic map at crisis, it should be possible to 
organize them on a full binary tree. Therefore, we should be able to find 
a generating partition made of two elements only. Since the points (x, y) 
and ( - x , - y )  are both mapped onto the same point, any meaningful 
partition must be able to discriminate between two such points. This is 
easily guaranteed by splitting the phase space into two regions with a 
straight line passing through the origin, y = m x .  The dynamics out of the 
x axis, for R > 1, can be characterized by a sequence of the symbols U (up) 
and D (down) associated with y > 0 and y < 0, respectively (that is, m = 0). 
The idea of looking at the sign of y is suggested by the structure of the 
second equation of map (2.4), which shows that the information on the sign 
of x (yielding the s s  for the logistic map) is directly transferred to the y 
variable. The sequence of U's and D's of a periodic orbit is determined by 
the sequence of O's and l's of the orbit from which it arises through a bifur- 
cation. Identifying U with 1 and D with 0, the rule is as follows. Given the 
binary x sequence associated with an orbit of the logistic map, the (i + 1 )st 
symbol of the y sequence is chosen to be equal to the ith symbol of the y 
sequence each time the ith symbol of the x sequence is a 0, while it is the 
negation in the other case. The only ambiguity in the above procedure is, 
therefore, the starting symbol. However, this is not a problem. Indeed, in 
the case of an odd number of l's, a sequence of period 2n is generated 
starting from a sequence of length n, so that the two choices of the initial 
symbol lead to the same sequence, apart from an irrelevant shift by n units. 
In the case of an even number of l's, instead, two distinct sequences are 
generated corresponding to the two distinct orbits arising from a double- 
point bifurcation. 

3.1. A Method for Computing Periodic Orbits 

In order to derive the scaling properties of the recurrent set, one needs 
an efficient numerical method to compute many unstable periodic orbits 
and their characteristic exponents. Moreover, the determination of unstable 
periodic orbits represents the only method to build the skeleton of the 
chaotic repeller for R < 1. In fact, in this parameter range the numerical 
method developed in ref. 9 is not applicable, as most of the initial conditions 
are attracted by the interval x = [ - 2 ,  2], and, as we will see in the following, 
there is no way to split the (x, y) plane into two regions containing the 
repeller and the attractor, respectively. 

Let us first consider the case 1/2 < R < 1. The periodic orbits lying out 
of the x axis are pairs of unstable loci and saddles arising from a tangent 
subcritical bifurcation at R =  Re. The method to compute these periodic 
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orbits is based on the existence of invariant manifolds connecting the saddles 
to the foci and arises from a modification of the method of ref. 9. We start 
from a point Xo on the x axis, belonging to a periodic orbit of the logistic 
map, and such that its ss contains an even number of l's (such orbits are 
easily found by exploiting the conjugacy of the logistic map with the 
piecewise linear map x ' =  1 -  2 Ix] ).(13) Then we choose a point close to x0 
along its stable manifold (i.e., transversely to the x axis) in a given 
direction, and we start iterating backward according to the inverse of map 
(2.4). At each step, we always choose the preimage according to the ss of 
Xo. A fast convergence to an unstable focus is observed, provided that we 
have chosen the right direction and that such an orbit exists (i.e., R is 
larger than the relative critical value Re); otherwise, either we observe a 
divergence to infinity, or the orbit ends up in the noninvertibility region. 
The consistency of the method proves indirectly that one branch of the 
stable manifold of x0 ends on the focus PF, in analogy with what happens 
for the focus-saddle pair of fixed points F1,/ '3. 

The following step is to consider PF as the new starting point to reach 
the conjugated saddle Ps. To this purpose we have to follow the map 
dynamics along the stable manifold of Ps. In this case, one is faced with 
the problem of following the stable manifold as closely as possible, in spite 
of the transverse instability. We proceed as follows: we first compute the 
two eigenvalues of PF and we choose two initial conditions P1 and P2 close 
to PF lying on opposite sides of the less expanding eigenvector. In fact, in 
analogy with the saddle point Xo, one branch of the stable manifold of Ps 
ends on the focus Pr and it is tangent to its (less expanding) unstable 
manifold. Then we need to know whether a given point lies on the left 
(right) side of the invariant manifold. This can be done by exploiting the 
ordering of ss. In the case of the logistic map (i.e., along the x axis) it 
is well known that, if x2>x l ,  then O(X2)>O(Xl), (14) where the binary 
expansion of 0 is constructed exactly as the Up/Down ss discussed in 
Section 3, with the identification U = 1 and D -= 0. As the stable manifolds 
of the periodic orbits of the logistic map cannot intersect each other (and 
so the stable manifolds of the corresponding saddles Ps), the same ordering 
is maintained out of the x axis. It is therefore sufficient to compare O(P1) 
[0(P2)] with O(xo) to decide whether P1 (P2) stays to the left or to the 
right of the invariant manifold. Practically, the segment joining P1 with P2 
is shrunk until its length becomes smaller than a preassigned accuracy. 
Then, its extrema are iterated according to (2.4) for a given number of time 
steps and the refinement procedure is again applied to decrease the width. 
This allows us to move along the stable manifold of Ps until the saddle is 
finally approached, and a standard Newton method is applied for an 
accurate estimation of Ps. The periodic orbits for R = 0.9 are reported in 
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Fig. 2. Periodic orbits of the repeller for R=0 .9  (up to period 15). Thick dots denote 
unstable foci, thin dots refer to the saddles. 

Fig. 2, up to period 15. The thick dots indicate the fully unstable 
component of the repeller lying closer to the x axis. 

For  R > 1 the x axis is fully unstable and all periodic orbits out of it 
are saddles. Therefore their search is a simpler task. One has to start from 
any given focus Pe, which now lies on the x axis, and apply the second 
part of the above procedure, following the stable manifold of the associated 
periodic orbit out of the x axis. Of course, one must take into account that 
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Periodic orbits of the repeller for R = 1.5 (up to period 15). Orbits of period 1, 2, and 
3 are explicitly indicated with an obvious meaning of the symbols. 

Fig. 3. 
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orbits with an odd number of l's give rise to orbits with a period twice as 
long, whereas those characterized by an even number of l's yield two orbits 
with the same period and lying in opposite directions with respect to the 
initial orbit. The periodic orbits up to period 15, for R = 1.5, are reported 
in Fig. 3, where the short cycles are explicitly indicated. 

4. M U L T I F R A C T A L  PROPERTIES 

In this section we study the singularities of the spectrum of the 
Schr6dinger operator (2.1) via the analysis of both the periodic 
approximants and the periodic orbits of map (2.4) and we compare the 
results obtained by these two methods. 

In the first approach the periodic approximant is defined by truncating 
the potential at a given hierarchical order h and repeating periodically the 
structure of the first 2 h sites. In this approximation the spectrum is made 
of 2 h bands, each one containing the same fraction of states. The basic 
relation (151 to obtain the multifractal properties of the limit set (h ~ ~ )  is 
in this case 

2 h 

r(q;h)= ~ ~ i ~ ( q ) ~ 2  hq (4.1) 

where 6i is the width of the ith band of the periodic approximant and 
r(q) = ( q - 1 ) D ( q ) ,  D(q) being the generalized dimensions. The Legendre 
transform 

dr(q) 
= - -  f ( a )  = ~q - ,(q) (4.2) dq' 

provides more direct information on the scaling properties. In fact, f ( a )  
coincides with the fractal dimension of the spectral component with scaling 
index a. 

The starting point of the second approach is the definition of the 
generalized ~ function, (16) 

'(z, ~ ) = ] q  (1 -znpm~) (4.3) 
P 

where the index p runs over all the primitive periodic orbits and rip, mp are 
their periods and expanding multipliers, respectively. In our case we have 
to consider the periodic orbits of the renormalization map (2.4). Let us 
recall that the first zero, Zo, in z of ~-t(z, q) is related to the fractal properties 
of the spectrum through the relation 

Zo = e - K~ (4.4) 
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where Ko is the topological entropy and q and r are defined as in the first 
approach. The infinite product in Eq. (4.3) can be rewritten as a power 
series in the z variable; for numerical applications it is truncated at a finite 
degree k in z and this can be done consistently if all periodic orbits up to 
period k are known. 

It is not obvious that the ~(q) obtained from Eqs. (4.3) and (4.4) 
coincides with the one derived directly from Eq. (4.1). In fact, the first 
method is basically equivalent to studying the intersections of the line of 
initial conditions (y = 2) with the stable manifold of the repeller, while in 
the second case, one takes into account the recurrent set only. Indeed, we 
will see that the results of the two approaches are essentially coherent apart 
from some information which cannot be extracted with the second method. 

4.1. The Case R > I  

The application of the first method needs an accurate computation of 
the bandwidths up to a sufficiently high hierarchical order h. One can show 
that this can be done by computing the zeros of appropriate polynomials 
of degree 2 h in E (for more details see refs. 7 and 8). We have observed that 
all the bands scale exponentially to zero with h, apart from the highest 
energy band exhibiting a faster scaling. Therefore, it is convenient to 
analyze only the scaling properties of the first half of the spectrum, discussing 
separately the contribution originating from the highest band. In fact, it is 
very reasonable to assume that the remaining part of the spectrum shows 
asymptotically the same scaling behavior as that of the first half (actually, 
this has been verified by numerical simulations). 

A numerical estimate of q(z) is obtained in two steps. First, we 
compute qh by means of Eq. (4.1), by comparing two consecutive hierarchical 
orders, 

F(q;h+ l) 
2 qh (4.5) 

C(q; h) 

Afterward, we extrapolate the asymptotic value q(r) from the sequence of 
qh values, having observed an exponential convergence of (qh+ l -qh )  with 
h. The numerical results for R = 1.5 with a maximum hierarchical order 
h = 15 are reported in Fig. 4, displaying the associated f(~) curve. The 
errors are much smaller than the thickness of the line. Moreover, notice 
that the minimum and maximum scaling indices ~min and ~max are given by 

log 2 log 2 
(4.6) ~min ~ ~)~1 ~max - -  ~2 
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Fig. 4. 
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f (~)  curve for R = 1.5 as obtained by comparing the bands of hierarchical orders 
h = 1 4 a n d  15. 

where 21 and )-2 are the Liapunov exponents of the fixed point F3 and of 
the period-4 orbit characterized by the ss UDDD, respectively. 

An alternative estimate of the f(~)  curve has been obtained through 
the computation of the ((z) function. In this case we have determined the 
multipliers of all periodic orbits up to period 15. The results are in full 
agreement with those obtained by the first method. This suggests that the 
anomalous scaling observed around the highest-energy band can be found 
only by the first method, which reaveals some singular behavior of the 
stable manifold, 

As a by-product of the multifractal formalism it is also possible to 
estimate the scaling properties of the Lebesgue measure # of the energy 
spectrum. One knows (s) that # = 0 for R t> 1, while it is positive for R < 1. 
The measure of the order-h approximant is defined as 

2 h 

#(h)=  ~ 6i (4.7) 
i = 1  

from which we see that it coincides with Eq. (4.1), specialized to z = -1 .  
Therefore, 

kt(h) ~ 2 q( - 1 ) h  (4.8) 

Incidentally, we notice that q ( - 1 )  log 2 is nothing but the mean escape 
time from the repeller. (17) We have computed the Lebesgue measure for 
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different hierarchical orders h, summing over all the contributions of the 
bands, including the second half of the spectrum. From the data reported in 
Table I, one can observe the good agreement between the ratio g(h + 1 )/g(h) 
and 1/R. This implies that 

in R In 2 
q ( - 1 ) =  ln2 '  D(q(-1))=lnZR (4.9) 

Accordingly, we have an explicit analytic expression at least for one point 
in the spectrum of the generalized dimensions D(q). It would be nice to 
prove rigorously Eq. (4.9), but we have not been able to find any precise 
argument. 

4.2. The Case R < 1 

For R < 1 many periodic orbits disappear via tangent bifurcations and 
half of the remaining cycles are unstable foci, so that they do not 
contribute to the scaling properties of the energy spectrum, as they cannot 
be approached along any trajectory. In this range of parameter values, each 
of the two components of the repeller (saddles and foci) is well described 
by the symbolic dynamics of the logistic map. For R = 0.9, we have computed 
all periodic orbits up to length 24, aiming to determine possible forbidden 
sequences and, in turn, to estimate the topological entropy of such 
components. As a result of the numerical analysis, we have not found any 
forbidden sequence up to length 13, thus suggesting that the topological 

T a b l e  I. Asymptotic Ratio of the Lebesgue 
Measure of the Energy Spectrum 

between Successive Periodic Approximants 
for R > I  a 

1.1 0.908266 0.909091 
1.2 0.833054 0.833333 
1.3 0.769205 0.769231 
1.4 0.714281 0.714286 
1.5 0.666666 0.666667 
1.6 0.624998 0.625000 
1.7 0.588235 0.588235 

~ The values of R are listed in the first column; 
the second column reports the corresponding 
extrapolated numerical values; the third column 
contains the teoretical prediction 1/R. 
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entropy is log 2, in striking disagreement with the relatively small number 
of cycles found. However, such an inconsistency disappears if one looks in 
Fig. 2 at the structure of the recurrent set, which seems to touch the x axis 
in many (possibly infinite) points, thus suggesting that the closure of the 
"external" repeller should include some of the cycles on the x axis. In other 
words, the binary tree is still complete, but the "external" recurrent set and 
the invariant interval [ - 2 ,  2] have in common not only the point F1, as 
for R > 1, but also all the cycles whose s s  have no corresponding trajectory 
out of the x axis. 

The above considerations suggest that the computation of the ~ function 
from Eq. (4.3) can be performed by factorizing the product into two terms 
corresponding to the orbits on and out of the x axis, respectively, 

~(z, v)= H (1-z',mp) H (1-z~pmp) 
{1) (2 )  

(4.10) 

We can formally multiply and divide the rhs of Eq. (4.10) by all the 
remaining contributions coming from the orbits on the x axis which do 
have a counterpart out of the x axis. Accordingly, we can introduce the 
analytic expression for the ~ function of the logistic map, (is) and we rewrite 
Eq. (4.10) as 

l(z, 27)__ ( 1 --4TZ)(1-2~+1z) H<2> (1-zn'm~) 
(1 - T z )  H<~'> (1 - z ' 2  ~n,) 

(4.11) 

where ( 2 ' )  indicates the orbits characterized by the same s s  as those in 
( 2 ) ,  but lying on the x axis. To evaluate the multifractal properties of the 
energy spectrum, we need to identify the smallest zero of Eq. (4.11). It is 
well known that the first two factors give rise to the well-known phase 
transition for ~ = 1. (19) This is originated from the existence of a single orbit 
(F1) characterized by a Liapunov exponent different from that of all other 
periodic orbits. In the present case, the orbits of the external component 
give rise to a further multiplicative contribution which can be expanded in 
a Taylor series. In Fig. 5 we report v(q) obtained from the three contributions 
in the numerator in Eq. (4.11 ). As a result, we discover that the contribution 
of F1 is no longer relevant, while a new phase transition appears from the 
competition between the contribution of the component on the x axis and 
the external one. A simple interpretation of this result can be given by 
looking at the f ( e )  curve plotted in Fig. 6, where both contributions have 
been drawn. The g-like component at c~= 1 [ f ( t ) =  1] is the standard 
distribution of the logistic map, whereas the dashed bell-shaped curve 
comes from the nontrivial repeller. The two contributions are connected 
with a typical tangent construction with a slope qc ~- 1.57. 
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Fig. 5. r(q) as resulting from the three smallest zeros of the • 1 function (4.11) for R =0.9. 
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Fig. 6. f (~)  curve for R = 0.9 as obtained from the first pole of the ~" function, after a truncation 
of the Taylor expansion at the 15th degree (solid curve). The almost linear dashed curve 
indicates the result of a direct computation from the bandwidths of the periodic approximants 
of the Schr6dinger operator. The dashed bell-shaped curve measures the contribution of the 
external repeller, which is negligible above ~c ~- 0.6. 
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Therefore, we can look at the whole recurrent set as the union of two 
distinct fractal sets (with two different probability weights), each one 
characterized by its own distribution of scaling indices. Depending on a, 
one of the components prevails over the other. The transition occurs at 
% ~- 0.6. The smallest scaling index still comes from F3 and is given by the 
expression defined in Eq. (4.6). 

Similar results have been also obtained by using the first method 
described at the beginning of this section, but the convergence to an 
asymptotic shape is much less clean (see the further dashed curve in 
Fig. 6). In fact, by this method it is not possible to distinguish between the 
two components, and, as usual in the case of phase transitions, slowing- 
down phenomena are at the origin of the poor convergence. 

A further relevant point is a possible dependence of the f(~)  curve on 
the choice of the initial value of the potential strength 2 in the Schr6dinger 
problem for 1/2 < R < 1. The possibility to observe a given scaling index 
of the density of states around an energy value is related to the existence 
of an intersection between the line of initial conditions ( y = 2 )  and the 
stable manifold of a suitable periodic orbit. Whenever 2 < Ym, where Ym is 
the smallest y coordinate of the points belonging to a given focus, then the 
line of initial conditions intersects the stable manifold of a saddle on the x 
axis, rather than the "external" saddle. As a consequence, one observes the 
scaling index associated with the saddle on the x axis. Therefore, while 
decreasing 2, the Liapunov exponents of "external" periodic orbits are 
progressively substituted by the standard exponents of the logistic map. It 
is reasonable to expect modifications in the f ( a )  curve as well. Accordingly, 
the f ( a )  curve displayed in Fig. 6 and determined from the periodic orbits 
has to be interpreted as the distribution for sufficiently large potential 
strength 2. A numerical verification of this hypothesis is, however, beyond 
any reasonable computing facility. 

For decreasing R, the external component of the repeller keeps 
decreasing, until it disappears at R = 1/2, where F3 exchanges the stability 
with F1. Below R =  1/2, F3 is a focus and does not contribute to the 
scaling properties of the energy spectrum. Therefore, the f ( a )  curve reduces 
of the standard curve of the logistic map. 

Let us recall that the measure/~ of the spectrum is strictly positive for 
R <  1. ~s) Therefore, an interesting question is how it scales to zero for 
R ~  1 . We have computed the measure for a sequence of periodic 
approximants and then extrapolated the asymptotic value, having verified 
an exponential convergence with the hierarchical order, as for the com- 
putation of the f ( a )  curve. The results, shown in Fig. 7, indicate a linear 
decrease of the asymptotic measure for increasing R toward 1. The prefactor 
obviously depends on the parameter 2. 
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Fig. 7. 
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Inverse of the asymptotic  measure  # of the energy spectrum versus ( l - R )  ~. 
A linear decrease of # is clearly seen for R ~ 1 _. 

4.3. Anomalous Scaling 

In this subsection we explain the mechanism leading to the already 
mentioned presence of a band showing an anomalous scaling. Let us first 
recall a result reported in Part I: for R < 1, the upper extremum of the 
spectrum corresponds to the intersection of the line of initial conditions 
with the unstable manifold of either F1 or F3 (depending upon whether 
R > 1/2 or R < 1/2, respectively). This implies that the scaling properties of 
the density of states around such a point of the spectrum cannot be inferred 
from the repeller structure. 

The scaling of the width 6 of a band sitting around a given energy E 
of the spectrum can be determined from the dynamical properties of map 
(2.4). Specifically, an estimate of 6 is given by 

1 
6 = - -  (4.12) 

mh 

where mh is the largest multiplier computed along the trajectory of length 
h originating from the point (E-- 2, 2) in the (x, y) plane. In the case of the 
upper extremum of the spectrum, such an orbit moves along the unstable 
manifold of F3 (F1), which asymptotically behaves as (see Part I) 

y=(1-R)x (4.13) 
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The Jacobian of map (2.4) along such a manifold is [-see Eq. (3.1)] 

M h = x h  - - R ( 1 - - R )  R 

Accordingly, 

(4.14) 

mh= Ah I~ xi (4.15) 
i 

where A is the largest multiplier of the matrix in Eq. (4.14). From 
Eqs. (2.4) and (4.13), 

xh+ 1 ~- - R x 2  (4.16) 

from which the leading behavior of xh is 

xh -- exp[2 h] (4.17) 

By substituting Eq. (4.17) in Eq. (4.15), the leading behavior of m h is 
described by 

mh -- exp[2 hI (4.18) 

The superexponential expansion indicated by Eq. (4.18) implies a scaling 
index around the upper extremum of the spectrum asymptotically equal to 
0. This explains the existence of the anomalously narrow band observed 
numerically. As a consequence, if one considered the whole spectrum, then 
f(:r would be simply equal to e, for 0 ~< c~ ~< 1. 

For R < 1/2 the anomalous scaling disappears for 2 < [Y3 l, where Y3 is 
the ordinate of F3, as the line of initial conditions intersects the stable 
manifold of F1 (see Part I). In general, let us notice that an anomalous 
scaling can be detected only around the upper extremum of the spectrum, 
since F1 is the only saddle point on the x axis without a corresponding 
"external" saddle. 

For R > 1, the atypical band is displaced to infinite energies. In such 
a case we can determine the behavior of the multiplier by first estimating 
the abscissa of the order-h highest band (i.e., the initial condition in the 
corresponding dynamical problem). From the analysis developed in Part I, 
the asymptotic slope of the unstable manifold (transverse to the x axis) of 
F1 satisfies the recursive relation 

~' = (4.19) 
cr 
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A linear stability analysis indicates that the order of magnitude of the hth 
iterate of c~ is, for R > 1, R -h. Accordingly, the intersection of the line of 
initial conditions with the corresponding branch of the invariant manifold 
occurs for x - R  h. The multiplier occurring in Eq. (4.12) has now to be 
computed over h steps starting from (R h, 2). It is easily seen that the ratio 
y/x tends asymptotically to R -  1, as in the previous case, so that we can 
follow the same procedure. The main difference is the value of the initial 
condition, which is now already R h, but it is not sufficient to modify the 
leading behavior given by Eq. (4.18), which thus remains unchanged for 
R > I .  

5. C O N C L U S I O N S  

In this paper we have analyzed the metric properties of the strange 
repeller associated with map (2.4). We have shown that its unstable 
periodic orbits characterize the structure of the repeller for any value of R. 
In particular, observing that map (2.4) reduces on the x axis to the logistic 
map at the Ulam point, we have been able to describe in full detail the 
bifurcation mechanisms that locate periodic orbits out of the x axis. 

The main results can be summarized as follows. For 0 < R < 1/2 the 
recurrent set reduces to the interval [ - 2 ,  2] on the x axis and to the fixed 
point F3. For 1/2 < R < 1 a sequence of tangent bifurcations generates 
pairs of saddles and unstable foci out of the x axis. The saddles and 
unstable loci belong to two different ergodic components of the recurrent 
set, A1 and Aa, respectively. Both components touch together in an infinity 
of points, corresponding to suitable periodic orbits on the x axis. The fully 
unstable component A z has no practical influence on the scaling properties 
of the spectrum of the Schr6dinger operator. The Lyapunov analysis of the 
component A1, combined with the ~-function formalism, allows us to carry 
out a detailed multifractal analysis of the spectrum. We find a clear evidence 
of a phase transition in the f(~)  distribution. This is the consequence of the 
existence of two distinct invariant subsets of A l: (i) the periodic orbits on 
the x axis, contributing with the same scaling index, and (ii) the remaining 
part of the repeller, contributing with a nontrivial distribution. The states 
associated with the first subset have the same features of the extended 
states typical of periodic potentials, while those associated with the second 
subset should reasonably show a sort of self-similar structure as found in 
the Fibonacci problem. (2~ The only aspect which is not captured by this 
formalism is a superexponential scaling detected at the upper edge of the 
spectrum, which has been tackled by other means. 

At R = 1 all periodic orbits on the x axis undergo either double-point 
or period-doubling bifurcations. As a result, the unstable foci become 



94 Livi e t  al.  

saddles and other saddles are generated by period-doubling, so that, for 
R > 1 the recurrent set is made of a single component out of the x axis. All 
the periodic orbits can be organized on a full binary tree. The symbolic 
dynamics follows from the introduction of a simple generating partition 
determined by the sign of the variable. 

All these results, together with those obtained in Part I, provide a 
detailed and, hopefully, complete description of the recurrent set (a strange 
repeller) associated with map (2.4). Let us observe that the analytical and 
numerical techniques applied to this problem can in principle be applied to 
similar problems. In fact, it results that a dynamical approach is interesting 
not only for studying nonlinear maps, but it also provides all the main 
information about the associated spectral problem. 

It is worth mentioning that this dynamical approach provides further 
information with respect to resolvent methodsJ 8/ An obvious example 
concerns the scaling properties of the energy spectrum. A less straight- 
forward result is the possibility of identifying detailed properties of the 
eigenstates. In our case, the existence of a pure-point component (for 
R <  1) is the direct consequence of the study of the properties of the 
invariant manifolds. 
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